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Abstract- Mode II! problem for a semi-infinite crack terminating at bimaterial interface is inves
tigated, The interface is modelled by different interfacial contact conditions, Corresponding bound
ary value problems are reduced to functional-different equations by the Fourier and Mellin integral
transforms, and later to systems of singular integral equations with fixed points singularities,
Solutions of the problems for various interfacial contact conditions are found, Particularly, the
singularity of stresses near the crack tip is calculated, Numerical results of the singularity exponents,
stress intensity factors, and jumps of the displacement near the crack tip are presented, Copyright

1996 Elsevier Science Ltd

L INTRODUCTION

It is a known fact from the papers by Williams (1959) and Zak and Williams (1963) that
an exponent of the stresses singularity is not equal to 0.5 as a rule, when the crack tip is
placed at the bimaterial interface. This result is a consequence of the "ideal" interfacial
conditions (tractions and displacements are continuous) along the interface. For such
values of the singularity exponent the usual Griffith-Irwin fracture criterion cannot be
directly applied. To remedy this for the interface crack, many authors following Comninou
(1977) assumed a frictionless contact zone along the crack surfaces near crack tip. In such
an approach, an oscillation of displacements near the crack tip is absent and the singularity
exponent is already equal to 0.5. (For intensive literature on this topic see Rice (1988) and
Comninou (1990).) In order to also obtain the same singularity for arbitrary crack location
Atkinson (1979), the author (1985), Erdogan et al. (1991), Ozturk and Erdogan (1995) and
many others presupposed that there was a special thin (but not equal to zero) transition
layer, into which mechanical properties are varied between the materials. The third way to
investigate fracture process near the "ideal" bimaterial interface is to use kinked crack
approach, He and Hatchinson (1989) have shown that such method makes it possible to
answer a question whether the crack will deflect into the interface or penetrate it for various
positions of the crack with respect to the interface. However, as Cherepanov (1984), and
Geubelle and Knauss (1994) have noted, the fact that the singularity exponent is not equal
to 0,5 has a principal character.

On the other hand, such criteria as the critical crack opening criterion (Leonov and
Panasyuk (1959) ; Dugdale (1960); Wells (1961)) or the effective stresses criterion (N ovo
zhylov (1969)) can be directly used for arbitrary stresses field, according to which mech
anism of fracture should be taken into account. Note in this connection the non-local stress
failure condition by Seweryn and Mroz (1995) which generalized the above mentioned
criteria. Consequently, one can consider any stress distribution near the crack tip which
depends in an essential wayan models of bimaterial interface as well as on the boundary
conditions along crack surfaces. It is interesting to note that (as it has been shown by
Nazarov (1981)) even if the crack is placed in homogeneous material the singularity
exponent can be equal to a certain value between 0 and 0.5 according to the contact
boundary conditions along the crack surfaces.
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Interfacial conditions other than those that are mentioned above are considered in
problems of soil and rock mechanics and mechanics of composites for layered structures.
Namely, tractions are assumed to be continuous and are proportional to displacements
discontinuity: ([u] - r(x)o-)Ir = 0, [a]lr = 0 along the interface r (see Linkov and Filippov
(1991)). Here Lnlr denotes a jump of the vector-function!across the interface; rex) is some
matrix-function, but x are local coordinates changing along the interface. With theory of
elasticity point of view such the contact conditions arise when bodies interact by a thin
adhesive elastic region, which is interpreted as a thin shell. So, if2D problems are considered,
and the interact regions are a thin layer, or a thin wedge (as in Figs la, b), then the matrix
functions rex) are of the form rex) = r L; rex) = rr w, respectively, where rL, r w are constant
diagonal matrices, but (r,O) are the local coordinates connected with the wedge tip.

The main regularities of interaction between the crack approaching to such "nonideal"
interfaces from the matrix have been investigated by the author (1994) for Mode Ill. In
this paper, an influence of "nonideal" interfacial conditions on the stresses singularity near
the crack tip terminating at the interface is investigated. We consider Mode l1J for the
domain which is such simple as it is possible-homogeneous elastic half-plane and two
wedges (Fig. 2). Such geometry presents the semi-infinite crack terminating at the bimaterial
interface. We assume that the adhesive intermediate region consists of a thin layer and two
thin wedges. Then corresponding "nonideal" interfacial conditions are rewritten in the
form: [aoJr+ = 0, ([uz]-(r+rr±)aOz)lr+ = O. Here r = ha//lm r± = ()!//l! (r,r±« I), but
/lm /l,f are the shear moduli of the thin layer and the wedges, respectively. These equations
generalize the "ideal" contact conditions (r, r:,:: = 0), and can be considered independently
on the particular model of the thin interconnecting region. Then the parameters r, r ± can
be interpreted as measures of flexibility of the adhesive.

/la, ha
--+1/1\

ha ~ 1

crack

IL

Fig. 2. Geometry of the problem under consideration.
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In the second and third sections the problem is formulated and is reduced to a system
of functional-difference equations. The solution of this system is found in the fourth section
for the case, = 0 (when the intermediate region is represented by thin adhesive wedges
only). The general case T > 0 is considered in the last section. In the Appendix the system
of functional-difference equations is reduced to a system of singular integral equations with
fixed points singularities, which is investigated in proper functional spaces.

2. PROBLEM FORMULATION

Let us consider an infinite domain consisting of the half-plane Q and two wedges Q± :

We shall seek the function u(x1, x 2) which satisfies the Laplace equation inside each of
the regions Q, Q ±. Exterior boundary conditions along crack surfaces n:
= {(r, 8) : r EIR+, 8 = - n/2 ± O} are defined in the form:

J.1±~:eU±r,:=±q±(r), where rX[q+(r)+q (r)]dr=O.
Jo

(I)

The last equation for the functions q ± (r) in (I) is the usual condition for solvability of the
Neumann problem (mechanical sense of this condition is also evident). Assume also that
the functions q± EC~(IR+). Then any singularities of the solutions will be connected with
the interior properties of the problems only.

Along the interior boundaries r ± = {(Xl, X 2) : ± XI E IR ~, X2 = O} (between the half
plane Q and the wedges Q±) the conditions hold the constants ",= ~ 0

!( a a)
U-U~-J.1,-~-u+J.1+'+a8u+ I' =0.- OX2 - -, - I

a
-~-(J.1U-J.1+u+)I' = O.
OX2 - - +

(2)

We shall look for regular solutions of the problems (1 )-(2) in a class of functions LW
such that U E L W if the following relations are held true:

1. U1G EC 2 (G);

2. u(X 1""'2) = O(r-IX), r = JXT+x~ ---+ 00, (XI,X2)EG,

3. U(X 1,X2 ) = u*+OVo), r---+O, (X Io X2 )EQ,

(3)

Here G denotes corresponding regions (Q or Q±) and Yo, Yx (0 < Yo ~ 1,0 < Yx < I) are
certain constants which will be found through solving the problem.

3. REDUCTION TO A SYSTEM OF FUNCTIONAL EQUATIONS

Applying the fourier and Mellin transforms

11(8,8) = rYe u(r, 8)r" I dr,
Jo

(4)

to the Laplace equation in the respective regions, obtain
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(5)

From a priori estimates (3) of a solution of the problem belonging to the class L W, and the
properties of the Mellin transform, it follows that the functions A± (s), B±(s) are analytical
in the strip 0 < f!ls < Yx, and have simple poles in the point s = 0, in general. Moreover,
these functions can be analytically extended on the strip - Yo < f!ls < YX' It will be con
venient to us to represent the function C(A) as a sum of the odd and even components:
C(l) = C + (A) +C (}.), then from (3) and the properties of the Fourier transform, it follows

(6)

with the parameters Ci > 1 -lex' f3 < Yo + 1. Here LP.x./i(IR+) is the Banach space of summable
with the weight functions of the norm:

( f
I )1 'p {(X, 0 < ( < I

Ilullp,x,11 = 0 lu((W~./J(() d(/( , Px./iCO = vii y ,
l;, 1:( C; <Xl

The exterior boundary conditions (1) are rewritten in the form:

(7)

(8)

Moreover, we can write balance conditions for each of the regions, taking into account (4) :

(9)

Now we fit together the Fourier and the Mellin transformations along the common
boundaries r ± (conditions (2)) in a similar manner as in Mishuris and Olesiak (1995), For
this aim represent the first equations as follows:

or

Further, applying the Mellin transform to both parts of the equations, and taking into
account the identities (see Gradshteyn and Ryzhik (1965)):

fI s'l{sind} {sin(ns/2)} _s{-I<f!lS<I}r , dr = res) . l , ,
o cos ric cos(ns/2) 0 < f!ls < 1

we obtain the equations:

(10)

2r(s)[(C\ (s) +prC+ (s - I)) cos(ns/2) - i(C_(s) +prC_(s- 1)) sin(ns/2)]

= A+(S)+ll+ r+sB+(s),

2r(s)[(C+ (s) +prC+ (s - 1)) cos(ns/2) + i(C_(s) +prC_(s- 1)) sin(ns/2)]

= A _ (s) cos(ns) - B (s) sin(ns) - p_ L s[B_ (s) cos(ns) +A _ (s) sin(ns)], (11)
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Here, we define Jcs) =R I - s). The second equations from (2) are analogously rewritten in
the form:

2r(s) (C\ (s) sin(ns/2) + iC (s) cos(ns/2)) = j1+ B t- (s),
j1

2r(s)(C+(s)sin(ns/2)-iC (s)cos(ns/2)) = _/L(B (s) cos(ns)+(A_(s) sin(ns)). (12)
Ii

As it follows from (6) and the properties of the Mellin transform the functions C + (s) are
analytical in the strips -Yo < ~s < "Ix;. Hence, the functions C±(s), C±(s-I) have-at least
the common strip of analyticity I -/'0 < ~s < (x' Of course, we assume in this case that
Yxc + Yo > 1. So, the eqns (11), (12) hold in the strip I - (0 < ~s < (em in general. Eliminating
from (8), (11), (12) the functions A±(s), B±(s), through algebra the following system of
functional equations is obtained:

j1TC(S - I) + <P(s)C(s) = F(s), (13)

where C(s) = (C+ (s), iC (s)) T, <P(s) = <PI (s) + <P2(s) , and the matrix-functions <PI (s), <P2(s)
and the vector-function F(s) are defined like this:

(
I +m+

<PI (s) =
- nL ctg (ns/2)

(
- j1t + .\' tg(ns/2)

<P 2 (s) =
Ilt s

m_ ctg (ns/2) )

I-m+ ctg2 (ns/2) ,

(14)

Note that the first condition (9) has been justified in view to (5), (6). The next conditions
(9) are rewritten in the form 2IliC_(0) = ±.t7±(I), where only one of them

(15)

should be taken into account in view to the condition from (1).

4. SOLVING THE PROBLEM Ir--; THE CASE T = a

It means that geometry of the intermediate adhesive region between the wedges and
the half-plane is modelled by two thin wedges only. In this case, the system of the eqns (13)
is correctly defined at least in the strip 0 < ~s < Yv because the term C(s - I) is absent in
(13). It is easy to note that the matrix-function <P(s) is invertible into a strip containing the
imaginary axis. In fact, the determinant of the matrix <P(s)

det <P(s) = 1+ m+ - (m~ +m+ - m~) ctg2 (ns/2) - 1l2S2(t~ - t2 )

+ Silt + ( ctg (ns/2) - tg(ns/2)) + 2j1s(m+ t + - m_L) ctg (ns/2) (16)

is t~ even function of the argument s, and the function det<P(iO is not equal to zero for all
~ E 1ft Moreover, the zero WI (i?lW1 > 0) of the function det<P(s), which is closest to the
imaginary axis is simple and real. Thus, the matrix-function <p- 1(s) is analytical in the strip
-WI < ~s < WI. and it does not increase along any line parallel to the imaginary axis.
Then the eqn (13) is solved in a closed form as
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Fig. 3. The graphs of the function det<1>(s) on the interval (0, I) in the case fl+ = fl-, '+ = ,

I fiX
(:(s) = Ii(s) == <1>- I (s)F(s), H(A) = ~. <1>-1 (s)F(s)l'-1 ds,

2m -lYe

(17)

and it can be directly verified 2ph2(0) = g+ (1), hence the condition (9) holds.
It can be easily shown that H E L~·"·fJ(iR.+) for any p E [I, IX:), rJ. > I -Wj, fJ < 1+WI'

Because of q+ E C~, we can more exactly investigate the asymptotics of the functions C + (A).
To this aim, -we need information about the next poles of the vector-function Ii(s). Note
that there exist two simple real zeros of the function det<1>(s) in the interval (0, 1), in general.
And, if we deal with the "ideal" contact condition (, ± = 0) only, there will exist a unique
zero of the function det<1>(s) in the interval (0, 1). Moreover, the next (the third in the case
'+ +,_> 0, or the second for, ± = 0) zero of this function is placed in half-plane Pits> I.

When mechanical parameters are symmetrical (p_ = p_, '+ = L) with respect to the
OXraxis, typical graphs of the function det<1>(s) are presented in Fig. 3a, b.

Here continuous lines correspond to the "ideal" (,t = 0) contact, but discontinuous
lines correspond to "non-ideal" contact with respective values of the parameters ,t
= 0.01,0.05, 0.25. Further on we will be using more convenient parameters ,* = J.1', ,1
= J.1±'±' which have dimensions as length. In general, the parameters ,*, ,1 are not small

in comparison with the parameters" '±'

For this case ('+ = L), the graphs of the first and the second zeros of the function
det<1>(s) are presented in Fig. 4 in a logarithmic scale with respect to the parameter ,t for
various values of the ratio J.11 J.1+. Note that the values of the first zero WI for small magnitudes
of ,t (,t < 0.1) are a little different from the values of the unique zero for the "ideal"
contact condition (,t = 0). Besides, the values of the second zero W 2 are an approximate
unity for ,~ < 0.005. The graphs of the zero W2 for small ,~ are presented in Fig. 4c. As
the value of ,t increases, the values of both zeros decrease. Moreover, Wj, W2 tend to zero,
when ,t -> 00. The last result is evident, at least for the first zero. In fact, the contact
condition for the displacement can be rewritten in the form

Then, passing to the limit, + -> eN, this condition will correspond to the homogeneous
boundary condition for the traction.

The other important case is, when along the boundary r _ "ideal" contact condition
holds (,~ = 0), but along the boundary r +, there is the "non-ideal" condition (,t > 0).
The elasticity parameters are assumed to be J.1+ = J.1- as above. Then the graphs of the first
and the second zeros of the function det<1>(s) are presented in Fig. 5 with respect to the
parameter ,t for various values of the ratio J.11 J.1+.

As it follows from Fig. 5, the tendency for a decrease of both zeros is preserved, but
the second zero W2 does not tend to zero when ,t -> CXJ for this contact condition.
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Fig. 5. The graphs of the first zero w, (a) and the second zero w, (b) for the case /1+ = /1-. T" = 0
in a logarithmic scale against T~ for different values of the ratio /1!/1+.

So, the asymptotics of the solution CO.) (= H(J,)) at infinity, which are needed to find
the asymptotics of the problem solution near crack tip, can be written as follows:

(18)

where c~) are residues of the respective components of the vector-function H(s) in the
points s = - w/ (j = 1,2), and (; > 0 is some small value. The behaviour of this vector
function in the neighbourhood of the point A = 0 can be obtained in an analogous way:
H(Je) = o(}.w , - 1), A -> O.
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Now, we can calculate the problem solution into the region 0 by the inverse Fourier
lrans[orm:

U(XJ, X2) = 2 rD

[C+(A)COsAX] -iC_(,.1.) sinAx]] e- ix2 dX
Jo

Using the inverse Mellin transform the last relation can be rewritten as follows (0 < b < WI) :

Here all transformations are justified in view of (6). Further, using identities similar to (10)
(x] = rcos8,x2 = rsin8,ljJ = nj2-8,8E[0,n]):

f A •. {sinX]),} . {COSSljJ} ,-
1.'-] e-H2 dA = r(s). r-',O < PIts < 1,

o COSX]A smsljJ

we obtain

(19)

In order to calculate the solution in the remaining region O± the following relations
are needed

_ 8 _ 9± (s+ I) cos [s(8+nj2+n/2)]
u+ (s, ) - . ,

P±S sm(ns/2)

~. ~ ~
- - cos(s(8+ nj2»r(s)[C_ (s) ± iC _ (s) ctg(ns/2)], (20)

P±

which follows from (5), (8) and (12). Let us note that the right-hand side of (20) has a
simple pole in the point s = 0 only in view to (15).

Finally, the asymptotics of the displacement u(r, 8) in a local system of coordinates
(r,8) coinciding with the crack tip (x] = rcos8,x2 = rsin8,ljJ = nj2-8) can be found by
the residue theorem:

J

' [CUI cos w· l, + cU ) sin w,{,]
2 2 +1'1' - 1'1' ,

u(r,8) = - I - r(1-wJr'eJ i P . .
r~O 1~] wj l-Cos(wj(8+n/2))[c~) =+= cU.) ctg (nw)2)],

P±

(r, 8) EO

The last relation (21) can be rewritten in the usual form

(21)

(r, 8) EO,

(r,8)EO±
+ oCr), r ---+ O. (22)

Here km are constants which playa role stress intensity factors (S.I.F.), and they are equal
to S.I.F. in the case Wi = 0.5. In general, these constants and the functionspj)(ljJ),f~)(8)

are defined by the relations
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x {p+ [I + Aj ctg(nw)2)]g_ (1 -w) + p [I - A j ctg(nwj2)lq+ (1 ~wJ},

pj)(lji) = cos(ljiwJ+A/sin(lji(o)J~)(8) = cos(wj(8+n!2))[1 =FA j ctg(nw)2)], (23)

where

However, for the symmetrical problem (p+ = p_, '+ = L), the relations (23) cannot be
used, because the matrix-function <I>(s) has diagonal elements eMs) (j = 1,2) only (see
(16)). In this special case, the respective relations for S.l.F. and the functions from (22) are
in the forms

Pll(lji) = sin(ljiw,), P21(lji) = cos(ljiw2 ),

P~)(O) = =Fcos(wj(8+n/2))ctg(nw,!2). f~I(8) = cos(w2(8+n!2)), (24)

The asymptotics (22) makes it possible to easily obtain the asymptotics of stresses near
crack tip.

It is interesting to note that if not only the mechanical parameters P±, '±' but the
tractions along the crack surfaces will be symmetrical also (g+(r) = -g_(r)), then the
coefficient kW will be equal to zero in the term corresponding to the second zero w 2 .

In Fig. 6a the graphs of the coefficient k~j) = kW are presented against the parameter
'~ for the various ratios of the elasticity constants p!P+. The traction is assumed to be the
Dirac b-function on the unity distance from the crack tip. As one can see, the value of k~'1

decreases (and tends to zero!) when the magnitude of the ratio p!P+ increases. This fact
shows that the value of generalized stress intensity factor (the parameter in the main
singular term of stresses) cannot be unique of the fracture mechanics parameter. A more
important value to investigate the process of quasibrittle fracture is k\{idW,!wj , where d is a
certain small geometrical parameter of a material (e.g. Mishuris and Semenov (1986);
Seweryn (1994)). It appears when the effective stresses criterion by Novozhilov (1969), or
the critical crack opening criterion by Leonov and Panasyuk (1959), Dugdale (1960) and
Wells (1961), or generalized criterion by Seweryn and Mroz (1995) are applied. In Fig. 6b,
the graphs of the value k~')/W, are presented. As one can see, the value of k~')/Wj does not
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Fig. 6. The graphs of the coefficient k~" (a) and the ratio k~1) !w, (b) for the case J1~ = J1 r* =
r* in a logarithmic scale against,~ for different values of the ratio J1!J1+.
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tend to zero when the magnitude of the ratio /1!/1+ increases. Moreover, taking into account
the behaviour of w] (see Figs 4a, Sa) and the fact that d« 1, the value k~l)dWI /WI already
increases when the magnitude of the ratio /1!/1+ increases, which seems to be a natural
occurrence.

In conclusion, note that for the case under consideration (r = 0), all values of the
parameters from the class LWhave been found Yo = (O'J = WI, V± = °and u* = uo (see (21)).

5. SOLVING THE PROBLEM IN A GENERAL CASE (T > 0)

First of all, note that the system of the functional eqns (13) holds in the whole strip°< :Jlts < Yx' namely, from the a priori estimates (see (12)) the vector-function C(s) is
analytic in the strip - (0 < rJlts < (00' but the vector-function F(s) and the matrix-function
<1>(s) are analytic in the strip°< f!Ils < I. Then from (13) it follows that the vector-function
C(s-I) should be analytic in the strip 0< f!Ils < Yoo and can have a double pole in the point
s = 0. Hence, in this case (r > 0) the parameter Yo ~ I, and

for any c; > 0. Multiply the system of the eqns (13) by the matrix <1>-1 (s)

r*<1> l(s)C(s-I)+C(s)=fi(s).

(25)

(26)

Then, by investigating the behaviour of the functions C+(s-l), C_(s-l) near the point
s = 0, and taking into account (15) and (25), one can easy see that only the function
C _ (s - I) can have a simple pole in this point, consequently

(27)

where e_ E IR: is some unknown constant, which will be found later, besides

Now, we shall consider the system of the eqn (26) with the additional condition (15)
for three cases separately, as the matrix-function <1> -I (s) has special behaviour at infinity
into the strip of analyticity.

FIRST CASE: rt = 0, but r* #- 0. This is the situation when the intermediate adhesive
layer is the thin layer only, then <1>-I(S) = 0(1), det<1>-I(s) = 0(1), ISZCsl ---> 00.

SECOND CASE: r*, rt > °(t~ #- t~). It means that the intermediate adhesive region
is modelled by the thin layer and the thin wedges along each of the interior boundaries r ± :

<1>-I(S) = O(l/s), det<1>-I(s) = O(l/S2), I.~.\·I---> oc.
THIRD CASE: r*, rt > 0, but r~ = 0 (t + = L). This is the situation when the

intermediate adhesive region is modelled by the thin layer and the thin wedge along one of
the interior boundaries r _only. Then <1>-I(S) = 0(1), det<1>-I(s) = O(l!s), ISZCsl ---> OC, and
the main part of the matrix-function <1>-1 (s) is degenerated at infinity.

In the Appendix the systems (26) with the additional condition (15) in the spaces (25)
for all cases are reduced to systems of singular integral equations with fixed point singu
larities. Solvability of such systems and the convergence of numerical methods are proved.

Particularly, in the first and the second cases when all mechanical parameters are
symmetrical with respect to the OXTaxis (/1+ = /1-, r+ = L or fn_ = 0, L = 0) cor
responding systems of the integral equations (A8) split on two independent equations, as
would be expected. Besides, in the first case, the solution of the first equation is found in a
closed form:
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but the next equation can be written as follows:

41

Here h!U) is the second component of the vector function H*(Ie) defined in (A3), but
iC _(Ie) = ,i2(0)e-; +.%', [Y2](A), where operator .%', is defined in (A9).

Now, we assume that the solution of (26) from the space (25) is already found. Then
it is possible to obtain the asymptotics of the problem solution near the crack tip, using the
representation (19), (20), and the asymptotics (27) (XI = r cos 0, X2 = r sin 0, t/J = n/2 - 0) :

-2r{[C_(-I)-e t/J]cost/J-[a+e lnr]sint/J}, (r,O)EQ

u(r,O) = u* +
r~O

where

Ji . 0v - ---v rSlll
± Ji± t* ± '

(r, 0) E Q±

(28)

It is interesting to note that only in the region Q do the stresses have weak singularity (as
In r). Such a singularity arises also (Zwiers et al., ] 982) at the free edge of composite
laminate, and can play an important role (see Stolarski and Chiang (1989)).

The greatest value of the stresses (JOe arises beyond the crack line into the region Q (i.e.,
when t/J = 0 or what is equivalent e = n/2) :

max (JoAr, 0) = (JoJr, n/2) = -2Ji{a+c (1 +lnr)} +O(r""), r -> O.
fiE[O.n]

This seems to be a natural occurrence. However, along the interior boundaries r ± between
the wedges Q± and the half-plane Q (t/J = ± n/2) the tractions are already bounded.

Now we present distributions of the displacement discontinuity [u](r,O) along the
interface r + in the case when all mechanical parameters are symmetric with respect to the
OX2-axis (tl = 0, Ji+ = Ji-). The tractions along crack surfaces are normalised:
g+(r) = -g_(r) = Ji+ e- r

• Besides, we assumed that the value of shear modulus Ji+ is
invariant under this consideration, then the value of m_ changes due to remaining shear
modulus Ji of the half-plane Q. Taking this fact into account, it is more convenient now for
us to use the parameter r = tJi+ = 0.] ; 0.0] ; 0.00] instead of t* = tJi, which depends not
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Fig. 7. The graphs of the displacement discontinuity [u](r.O) along the interface r + in the case
/1-+ = /1- for different values of t = T*/In+ and the ratio In+ = 0.1 ; 10.0.

only on the parameter " but on the value of J-l as well. Graphs in Fig. 7a correspond to
ratio m+ = J-l/J-l+ = 0.1, but those in Fig. 7b correspond to m+ = 10.0. Besides, from these
graphs the values of traction along the interface can be also calculated by the relation (I),
which is in the form: (J"Jr, 0) = r _. I [u](r, 0).

As one can see, the'displacement discontinuity is not equal to zero near the crack tip,
as has been mentioned above. The greatest values of [u](r, 0) (and the interfacial traction,
consequently) arise when the crack terminates in soft material (m+ < I). However, the
function [u](r, O) is rapidly decreasing when m+ < I in comparison with the case when the
crack terminates in stiff material (m + > I). The interfacial crack arises if [u] (0 +,0) is greater
than some value 0", which is a constant of adhesive material. Hence, the risk of an interfacial
crack appearing is largest when the crack approaches a soft material from a stiff one. This
result completely coincides with that obtained by the theory of adhesion (e.g. Cherepanov
(1983)). However, this approach makes it possible to simply investigate the case when the
crack terminates in stiff material as well.

As it follows from the Fig. 7 the values of [u](r, 0) increase when the magnitude of r
increases, and if r ----> 0 then [u](r, O) ----> O. To illustrate the last fact in Fig. 8 the values of the
jump of the displacement [u](O+, 0) and the normed traction J-l- 1

(JX2 Z (0+, 0) are shown as
the functions of the parameter ,*. The graphs are represented in a logarithmic scale for
different magnitudes of the ratio m+ = J-l/J-l-. All other parameters are as above in Fig. 7.

As it can be seen for small ,* < 0.1, the graphs of the traction and the normed jump
of the displacement are straight lines for all presented magnitudes of the parameter m+. It
means that the asymptotics of these values are in the form of

00001 001
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Fig. 8. The graphs of the nonned traction /1--IUex,(O_f-l 0) and the jump of the displacement
r. = [u](O~,O) in the crack tip against T* in the case /1-+ = /1--. T± = 0.
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where the exponent vcalculated numerically is connected with the parameter WI = WI(p! fl+)
correspond to the "ideal" contact along the interface with the accuracy to 0.1 %, i.e. v ~ WI'

Note only that the parameters m+ and r* depend on three material parameters fl, P+ and
r.

To conclude, note that for the case under consideration (r > 0), all values of the
parameters from the class LW (see (3)) have been found Yo = 1, YL = WI, and the constants
V±, u* are presented in (28). Besides, the first relation in the point 3 (3) can be corrected.
Namely, it should be O(rlnr) instead ofO(rio ).

6. CONCLUSIONS

As it would be expected, the singularity of the stresses near the crack tip terminating
at the bimaterial interface depends on the models of the interface in an essential way.

In the considered Mode III problem for the model of interface in the form:
([u] -rr±lT)11+ = 0, [0']11, = 0 (corresponding to the adhesive region in the form of two thin
wedges only): the main exponent of the singularity is in the interval ( -1,0). It has a value
approximating that of the "ideal" bimaterial contact case, if the parameters rt < O. I.
Besides, there is a second exponent in the interval (- 1,0), which has the value near zero
for r~ < 0.1. This singularity cannot be observed in situations when all geometrical and
mechanical parameters of the problem are symmetrical with respect to OX2 axis. The graphs
of the singularity exponents Wh W 2 for different values of the parameters are presented in
Figs 4, 5.

When the geometry of the adhesive is assumed to be of the general form
([u] -(rr± +r)O')I[+ = 0, [IT]IL = O(r, r± > 0) or the thin layer (where r > 0, r± = 0), the
stresses increase in' the neighb'ourhood of the crack tip as In r inside the half-plane n only,
and the greatest value of the stresses lTliz into the region n arises beyond the crack line.
However, inside the domains n±, the stresses are bounded as well as the traction along the
interface. At this time, the jump of the displacements along the interface is not equal to
zero near the crack tip. Moreover, for the small magnitudes of the parameter r*, the traction
and the jump of the displacement near the crack tip are presented in the asymptotic form
(29). Thus it is sufficient to calculate these values for a unique small r*.
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APPENDIX: SOLVING OF SYSTEM OF FUNCTIONAL EQUATIONS (26)

What remains is to solve the system of functional eqns (26) with condition (9). To this aim, it will be suitable
for us to introduce a new unknown function:

(AI)

then iC (.I') = C,,(s)+ll,(O)1(I-s), (:*(.1') =«(\(.1'), C"(S))T, and the vector-functions (:(.1'), (:*(.1') will have
similar behaviour. Hence, the vector-function COCA) belongs to the space (25).

The system of the eqns (26) defined in the strip 0 < &£.1' < W, is rewritten in the form

where

T*rI>-' (.1')(:*(.1'-1) +(:*(.1') = H*(s),

H*(/) = H(il) - h~ (0) In +." [T*(I-S)rI>-' (.1') + I] (O)r(1_ .1')1'-' ds, b E(O, wd.
.::..1'[1 -if +ij 1

(A2)

(A3)

Here 1 is the unity matrix. Besides, the known vector-function H*(s) and the unknown vector-function (:*(.1') are
analytical in the strip - I < .Jds < w, at least, and satisfy the additional conditions

(A4)

We shall seek the solutions of the system (A2) with the additional condition (A4) in the form:

ns
(:*(.1') = R k '(.1')15(.1'), R,(s) = ns+ I) cos 2 o

o ]ns
ctg 2

[
I 0 ~

nv
o ctgi-

ns nSjns+ I) cos 2 ctg 2
ns

-ctg 2

(A5)

Here and before the values of k = 1,2,3 correspond to three different cases mentioned above. It is evident that
the vector-function 15(.1') has not poles in the points .I' = 0 and s = -I in view to (A4) , and the strips of analyticity
for vector-functions 15(.1'). (:*(.1') coincide. Hence, the vector-function D().) belongs to the spaces

for any small value of [ > 0, and some", > O.
Represent matrix-functions Nk(s) = Rk(s)rI>-'(s)R;' (.1'- I) in the forms
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-m )
l+m_ '

(A6)

where the matrix-functions M I
," (5) hold the condition: Mik)(s) = 0(1/5), I,~sl---> ex;, at least.

Then substituting (AS) in (A2) and applying the inverse Mellin transform

is obtained where

After calculating the respective integrals and taking into account the fact that the matrix-functions 1+ r* Jc
MI" are nondegenerated for any J.)o 0, we obtain systems of singular integral equations in the spaces
Lj'''', +., (~+) for 1:,0, > 0:

(I + ,<lid Y = Z" [,<li" Y](X) = A[I +r* i,M't)r I J"" 'P k ()', e;) Y(e;) ~(, k = 1,2,3,
o '

(A7)

Here, we denote by Y(i,) = i,D(A), Besides, the homogeneous of the degree 0 matrix-function 'l',(A, e;) = 'l',(A/e;, I)
and the vector-function Z,(A) are defined by relations:

(A8)

Note, that the integral operators ,<li, have fixed singularities in zero and at infinity points, Based on the results
from the paper Mishuris and Olesiak (1995), it can be shown that the operators d,: U;,'./J(~+) ---> U;,'.fi(j;£+)
( - W, < rx < [3 < 1+w" I ~ p < 00) are bounded, and the following theorem can be proved:

Theorem
The system of the singular integral equation (A7) has a unique solution in the space L",xl'(R:+)

(I ~ p < Cf), I-WI < [3 < I +WI' -W, < rx ~ [3), which can be calculated by projectional methods,
We do not present here the proof of the theorem, Note only that the main aim is to show that the operators

I +,<li, in the space y,'I'(H+) (I ~ p < 00,1- WI < fJ < 1+w" -WI < rx ,:; [3) are isometrically equivalent to some
pair integral of the operator Wiener-Hopf type accurate to a compact operator. The symbols of those operators
are of the form

Then it remains to note that N,( - it) are the definite matrix-functions, and the even functions detN,( - it) = cth'
tdetlD l

( ~it), detN,(-it) = t'cth4tdetlD- l
( -it), detN)( -it) = tcth)tdetlD-'( -it) have not any zeros for tE R

Consequently, the index and the part indices of the operators I+,<li, in this space are equal to 0,
When the solution Y(A) of the eqn (A8) is found, we can then calculate the vector-function C*(},) (see (AS))

as

II

('~'
1

I-I 0 j{j, 0 AIc*u) = [~, }l(i,). ;~, = I ), ,~, = <~) =
I

0 Oi6,
0 :0i6 )

-:0i6,\ \ ,'J$]

2 J" 1'( i') dr; 2 ~, . de;
[,!8,v](J.) = - -~--, [0i6,v](}c) = -I sin(),/;)v(;j-::-"

n 0 (~_)2 n oJ 0 A~

41" d'[;!8)t'J(),) = - [Si(,,';;) cos(i,!() +ci(iR) sin(A/O]v«() ,:,
7[2 0 ~~

(A9)
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where I is the unity operator and singular integral operators ;Jjjk: U',P(IR:+) --> U H 1.2 '(IR:+) are bounded for any
- w, < ex < () < 1+ WI' I ,.,; p < CXJ, E > O. Hence, all a priori estimates for the vector-function C(A) (25) have heen
justified. What remains is to calculate the values of the respective parameters C\ (- I),e _ from the asymptotics of
the problem solution (28)

o
2
1!


